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ABSTRACT

We present theoretical results pertaining to the ability,pimin-
imization to recover sparse and compressible signals fraram-
plete and noisy measurements. In particular, we extendethdts
of Candés, Romberg and Tao [1] to thec 1 case. Our results indi-
cate that depending on the restricted isometry constasgts€sg., [2]
and [3]) and the noise leved,, minimization with certain values of
p < 1 provides better theoretical guarantees in terms of stalhifid
robustness thafy minimization does. This is especially true when
the restricted isometry constants are relatively large.

Index Terms— Compressed Sensing, Compressive Samplingfor all subsets of columr with

£, minimization, Sparse Recovery

1. INTRODUCTION

The problem of recovering sparse signal®iti from M < N mea-
surements has received a lot of attention lately, espgaiath the
advent of compressive sensing and related applications[4.5, 1,
6]. More precisely, let: € RY be a sparse vector, lg&t ¢ RM*N

be ameasurement matrixand suppose the possibly noishserva-
tion vectorb is given by

b=Ax+e. Q)

wheree € R™ denotes the noise. The goal of a sparse recover

algorithm is to obtain an estimate &fgiven onlyb and A. This
problem is non-trivial sinceA is overcomplete. That is, the lin-

ear system of\/ equations in (1) is underdetermined, and thus ad-

mits infinitely many solutions among which the correct onestrhe
chosen. As the original signal is sparse, the problem of finding
the desired solution can be phrased as some optimizatidiemno
where the objective is to maximize an appropriate measuspaft
sity while simultaneously satisfying the constraints deditby (1).
As the sparsity ok is reflected by the number of its non-zero en-
tries, equivalently its so-calle@ norm, in the noise-free case of (1)
one would seek to solve th&, problem, e.g., [7],

Py : mxin ||x||o subject tob = Ax. 2
It can be shown thalP;, recoversx exactly ifx is sufficiently sparse
depending on the matriA [7]. However, this optimization prob-
lem is combinatorial in nature, thus its complexity growsremely
quickly as N becomes much larger that¥. Naturally, one then
seeks to modify the optimization problem so that it lendslitto
solution methods that are more tractable than combin&seach.
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In fact, it has been shown (e.g., [2, 1]) that, in the noisefetting,
£1 minimization, i.e., solving

Py : min ||x]||1 subject tob = Ax, 3)
recoversx exactly if||x||o < S and the matrixA obeys a particular
restricted isometry property, e.gas+2d3s < 1. Hereds are theS-
restricted isometry constants Af, defined as the smallest constants
satisfying

(1=ds)lells < [|Aze]3 < (1+6s)lle]3

(4)

(T) < Sandany vectoe. In the
general setting, [1] provides error guarantees when thenlyidg
vector is not “exactly” sparse and when the observation isyno

Theorem 1 [1] Assume that is arbitrary, b = Ax and suppose
thatdss + 3d4s < 2. Then the solutiox™ to Py (see(9)) obeys

()

For reasonable values af,s, the constant C is well behaved; e.qg.
C = 8.82 for 545 = 1/5.

This means that giveib, solving P; recovers the underlying
sparse signal within the noise level (thus, perfectly 0).

Ix* — x|z < Cgse.

¥heorem 2 [1] Assume thak is arbitrary, b = Ax+e, |le||2 < €

and suppose thaks + 345 < 2. Then the solutiosx™ to Py, where

Pi: min ||x||: subjecttg|b — Ax||2 <€, (6)
obeys
||X* —X”Q < 01756—0—02,5%. @)

For reasonable values af,s, the constants are well behaved; e.g.
C1,s = 8.77andCs,s = 12.04 for d4s = 1/5.

More recently, [8] showed that in the noise-free settingyféi-s
ciently sparse signal can be recovered perfectlyyiminimization,
0 < p < 1, under less restrictive isometry conditions than those
needed fo¥; minimization.

Theorem 3 [8] Let 0 < p < 1. Assume thak is S-sparseb =

Ax and suppose thalis + lc2Tp dkt1)s < k?Tp — 1, for some
k > 1. Then the minimizex* to P,, where

Py: mxin ||x||, subject to)Ax = b, (8)
is exactlyx.

Note that, for example, when = 0.5 andk = 3, the above
theorem only requiredss + 27045 < 26 to guarantee perfect recon-
struction with?y 5 minimization, a less restrictive condition than the
one needed to guarantee perfect reconstructiofy loginimization.

In what follows, we present generalizations of the above-the
rems, giving stability and robustness guaranteegfoninimization.



These are of the same nature as those provided above fomi-
mization in the general (noisy and non-sparse) settingenliging
less restrictive. We also present simulation resultshéurrtllustrat-
ing the possible benefits of usidg minimization.

2. STABLE RECOVERY IN THE PRESENCE OF NOISE
WITH ¢p MINIMIZATION

In this section, we present our main theoretical results&apeng to

the ability of £, minimization to recover sparse and compressible

signals in presence of noise. To that end, we define

Py : min ||x||) subject to]|b — Ax|]2 <e. 9)

Theorem 4 (Sparse Case)Assume thak is S-sparse and suppose

that for somek > 1, kS € Z*

2_q 2_4q
Oxs + k> 6(k+1)S < kr — 1. (10)

Letb = Ax + e where|le|2 < e. Then the minimizex™ of P;
obeys

HX* — XHQ < Csyk,pe, where

1
2w

((1 _ 5<k+1)s)p/2 _ (1 + 5ks)p/2kp/2_1)1/l7.

Csep =

In summary, the theorem states that if (10) is satisfied thercan
recoverS-sparse signals stably by solvitgf. Note that by setting

measurements vi&@ minimization wheré) < p < 1. The constants
Cskp andcéf)k_p determine upper bounds on the recovery error in
the sparse and general settings, respectively. Theseaotsistepend
on S, which reflects the sparsity or the degree of compressilufit
the signal to be recovered, gn determined by the recovery algo-
rithm we use, and ot, which is a free parameter provided (10)
holds. Our actual goal is to obtain the smallest possiblestenis
for given S andp, which can be done by finding the valuefothat
minimizes the corresponding constant in each case. In saynma
given S andp, we can replac€'s  ,, andcg’)k’p with Cs .+, and
Cgf)k*_p wherek™ (S, p) minimizes the constants in each case.

An extensive analysis of this last minimization step deseom
the behavior of the restricted isometry constants of theimat and
is beyond the scope of this paper. In Section 4 we presentiealpi
behavior of these constants whdris a Gaussian matrix.

Finally, note that (10) is less restrictive for smaller \edwfp.
For example, whet$ is large so that (10) does not hold fer= 1,
there may still exist some < 1 for which (10) holds for somé.

3. PROOF OUTLINES

Due to lack of space, we only present the outlines of the groof
which mainly follow those of [1] with modifications to accaufior
the factp < 1.

Proof outline for Theorem 4. Let x be the original signal with its
S nonzero coefficients supported @ and letx™ the solution to
P;. Leth = x* —x = hp, + hre be the difference between
the original and recovered signal, divided into two pdrts, with

p = 1andk = 3in Theorem 4, we obtain Theorem 1 as a specialnonzero coefficients offy andhr¢ similarly supported or/y. It
case. By setting = 0, i.e.,assuming no noise, we obtain Theorem 3can easily be shown thﬁhT(g 2 <l |I2.

as a corollary. An important question that arises next is welone
can recover a signal that is “just nearly sparse” [9]. In tostext,

let x be arbitrary and leks be the vector obtained by retaining the

Divide T¢ into setsT, T, ... such thaty;>1T; = Ti, whereT}
supports the:S largest coefficients dre, T> supports thesecond
kS largest coefficients dirg, and so on. Lefy: = To U T1. Note

5 coefficients ofx with the highest magnitudes and setting the restipat Ah = A4, hyy, + ., Ar,hr,. Since bothx andx* are

to zero.

Theorem 5 (General Case)Assume thatk is arbitrary and sup-
pose that (10) holds for sonie> 1, kS € Z*. Then the solution
x* to P, obeys

x (1) (2) Ix —xsllp
[x* —x|l5 < Cg ;" + Csykvpisl—p/Q , Wwhere
cm _op L+ kP2 (2/p—1) "2 and
S,k,p (1 — 5(k+l)s)p/2 _ (1 + 5ks)p/2kp/271 )
e ML (R b
kK, 1-p/2 .5)P/2
vk (1= Sernys)r/? — Lipeage

Thus, the reconstruction error (to thE* power) is bounded by
the sum of two terms; the first is proportional to the obséovaer-
ror, while the second is proportional to the b&sterm approxima-
tion error of the signal. Note here that by setting- 1 andk = 3in
Theorem 5, we obtain Theorem 2, with precisely the same antsst

Remarks

In Theorems 4 and 5, we provide sufficient conditions for veco
ability of sparse or compressible signals from noisy andnmglete

feasible therj| Ah||» < 2e. This leads to the following inequality

(26)p > ”Ah”g > ||AT01hT01 ”g - Z HATihTng'

i>2

1y

Since#(To1) = (k + 1)S and#(T3) = kS, then

2 2
(26)" > (1= 8gerys) "Iz, 5 — (1 + 6ys)” > IIbr, |5

i>2

(12)

What remains now is to bound, ., ||hr; ||5 and|/hz,, ||5 in terms
S Ihpe|® hope ||2

of ||h|l2. Observe thathrg|?, < 2| lTo‘m _ ! i Io where

lhre | is thel" largest element ofhre|. Thus, taking thep*”
root, squaring, and summing oviee 7¢; we get

||| [ |7
2__p(k5')2/p—l = 2__p(k5')2/p—l
p p

[hrg, |3 < (13)
Now, note thathr, , ) [" < 32, [hr,)]?/(kS) = [y [[5/(KS).
Taking thep'” root, squaring, and summing overe T;.1, we get
Iz, |3 < (kS)'~/7||hr, 3. Thus,

> Iz, |15 < (kS)"* 7 (|ha |-

i>2

(14)

Noting that|[hr |, < §%/77/% |y ||2, so|[h, [[f < S*77/2 ||, |I3



we can now substitute in (12) to get

P/2 HhTmHg

/2
(26)" > (1=0(ks1)s)"" "Iz, 15— (1+0ks) e

. (15)

Using (13),

1

2 2 2 2
[Ih]|z = [[hry, |2 + [hre |l2 < |Ihry, [[2(1 + m)v

which when substituted in (15) yields the desired result.

Proof outline for Theorem 5. This proof is similar to the analogous
proof in [1] and differs from the previous one by definiig as the
support set of thé&' largest coefficients of , which is now no longer
assumed sparse. This leadg{tere |7 < [|hr, ||5+2]/x7g |5 Using
this inequality instead of the analogous one from the prevjaroof,
the rest proceeds similarly with minor modifications to l¢adhe
desired result.

4. NUMERICAL EXPERIMENTS

In this section we present numerical experiments, to iaistthe
behavior of the constants in Theorems 4 and 5 and to emprical
investigate the solution of (9) in the presence of noise, lzowl it
depends omp.

To that end, 56 x 1024 matrix A is randomly generated from a
mean-zero Gaussian and held fixed. We estimate the redtiscta-
etry constants oA (see Figure 1(a)) by computing singular values
of 1000 randomly selectetl x S submatrices (thus providing lower
bounds on the true values). We then estimate the valué€af,
from Theorem 4 and sinck is a free parameter, we compute the
minimum value of the constant over all admissildle> 1, inde-
pendently for eacly. As shown in Figure 1(b) (with the optimél
values in Figure 1(c)), the resulting bound is much tightantthat
obtained by fixingk, e.g.,k = 3 as in Candés and Tao [3]. Note that
the constant€’s ., provide upper bounds which are possibly rather
pessimistic: numerical experiments where we solve (9nylielver
errors, particularly whep is close to 0, see Figures 2 and 3. Never-
theless, there is a wide rangepo¥alues for which the constants are
well behaved, and they guarantee a stable recovery.

We now describe the experiments where we gendrateAx +
e for sparse and compressibtewith various noise levels and solve
(9). Note that the nonconvexity d?; whenp < 1 means that our
solutions may only be local minima. However, in the noissefset-
ting, the observation that locé), minimization can recover signals
exactly [8], together with theoretical results providingcamstances
under which the global,, minimizer is exact [10], suggest that local
minimization algorithms may give global solutions in thameext.

Our approach to solving (9) is to first solve the simpler, umco
strained formulation:

Pay : min [x[7 + pl[b — Axz. (16)

ds estimate

0.4 L L L L L
50

100 150 200 250

(a) Estimates of g

S=8and S =32

T T
-=--5=8k=3
=S =8, k(p) optimal

- =-8=32,k=3 [
= S = 32, k(p) optimal

(b) Cg i, for k = 3 and for an optimak with S = 8 and

32
S=8and S =32

N ; : ; ; —

:{ 20 - ==5=32
S

&0
g 15f ]
N
2 s ]
o~ Veem -
= N

O0 O‘.l D‘.Z 0.‘3 0.‘4 0.5 0.6 0.7 0.8 0.9 1
p
(c) The value for the optimat as a function op
Fig. 1. (a) Estimates ofos for a specific Gaussian matri& of

size256 x 1024. (b) The resulting constaniSs ;. , at.S = 8 and
32 computed both fok = 3 and fork™ (.S, p) which minimizes the
constant for a givep andS. Choosing the best reduces the upper
bound on the reconstruction errdc) The values ok™*(S,p). The
dip atp = % for S = 8 is likely due to small numerical differences
arising from1/p being an integer. For botfi = 8 andS = 32, once

p is large enough, there is rio> 1 for which (10) is satisfied.

The parametes is adjusted manually and the minimization repeated,negative)_ We begin the iteration with the minimum-normusion

until the constraint in (9) is active. For eaphthe problem (16) is
solved using an iteratively-reweighted least squarescambr [11].
Code for this was contributed by Wotao Yin, for which we aratgr
ful. The previous iterate,,_; is substituted into the Euler-Lagrange
equation, leading to a linear equation to solve for the rtexatex,,:

2 p-2 T
[xn_1+e€] 2 xn+pA (Axn —b) =0, (a7)

where the operations in the first term are to be understoogpcom
nentwise, and the is added to avoid division by zero (as— 2 is

to Ax = b, and use the strategy found effective in [8] (see also [12])
of using a moderately large = 1, then iteratively decrementing

by a factor of 10 after convergence and then repeating. Cgexee
was deemed complete WhéR,, — x,,_1]|2 < 1075,

Sample results are shown in Figures 2 and 3 . The signals
were randomly generated from a mean-zero Gaussian disbribu
(o = 1) on the support ok. Solutions were computed fgr =
0.01,0.1,0.2,...,1, for a very sparse signalS( = 8), a not so
sparse signal§ = 90), and a compressible but not sparse signal
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Fig. 2. Plots of reconstruction error verspsfor solutions of (9).
Top: for a very sparse signal, the reconstruction erroisrigih p.
Middle: for a less sparse signal, when the noise level isowlarge,
the error changes little, except for largavhere the reconstruction
is poor. For stronger noise, the reconstruction is unifgrpdor.
Bottom: for a signal that is compressible but not sparse ether
rises for small or large, being least fop aboutl /2.

obtained by adding small Gaussian noise< 0.01) to a randomly
generatedd = 2) sparse signal{ = 32). Gaussian noise of differ-
ent levels was added t#4x to obtain the noisy measuremeihis
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